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ABSTRACT

FORMATION OF PYRENE EXCIMERS IN
MESOPOROUS ORGANICALLY MODIFIED SILICA

THIN FILMS FOR VISUAL DETECTION OF
NITROAROMATIC EXPLOSIVES

Pınar Beyazkılıç

M.S. in Materials Science and Nanotechnology Program

Supervisor: Assoc. Prof. Dr. Mehmet Bayındır

August, 2013

Pyrene is a polycyclic aromatic hydrocarbon compound. Pyrene has been exten-

sively applied as probing and sensing molecule because of excimer fluorescence

which is formed upon interaction of two pyrene molecules in close proximity. In

this thesis, we prepared porous thin films with bright pyrene excimer fluorescence

and demonstrated their application in visual and rapid detection of nitroaromatic

explosive vapors. The fluorescent films were obtained by physically encapsulat-

ing the pyrene molecules in the mesoporous organically modified silica (ormosil)

networks which were synthesized via a facile template-free sol-gel method.

Formation and stability of pyrene excimers were investigated in both porous

and nonporous ormosil thin films. Excimer emission was found to be significantly

brighter and more stable in porous films compared to nonporous films. The ex-

cellent stability of the pyrene excimers in the porous films is due to the nanoscale

confinement of pyrene molecules in the porous ormosil network. We studied the

nitroaromatic explosive sensing performances of the pyrene doped porous films.

Films exhibited a rapid and visible fluorescence quenching when they were ex-

posed to TNT vapor. Fluorescence quenching efficiency of an approximately 100

nm thick porous film was calculated to be 55.6% after exposure to TNT vapor for

30 seconds revealing a rapid sensing behavior. Fluorescence quenching of the films

can be easily observed under UV light enabling naked-eye detection of nitroaro-

matic explosives. A selective quenching was observed in the excimer emission

against vapors of nitroaromatic molecules; trinitrotoluene (TNT), dinitrotoluene

(DNT) and nitrobenzene (NB) among various aromatic and nonaromatic com-

pounds. Furthermore, quenched excimer emission of the films can be recovered

by simply washing the films with water. It is shown that the films can be reused
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for at least five times after washing. To this respect, pyrene doped ormosil thin

films can be presented as facile materials for nitroaromatic explosive sensing ap-

plications.

Keywords: Pyrene, excimer, ormosil, sol-gel, thin film, nitroaromatic explosive

detection.



ÖZET

NİTROAROMATİK PATLAYICILARIN GÖZLE
GÖRÜLEBİLİR TESPİTİ İÇİN MEZO BOŞLUKLU
ORGANİK OLARAK MODİFİYE EDİLMİŞ SİLİKA

İNCE FİLMLERDE PYREN EKZİMERLERİNİN
OLUŞUMU

Pınar Beyazkılıç

Malzeme Bilimi ve Nanoteknoloji, Yüksek Lisans

Tez Yöneticisi: Doç. Dr. Mehmet Bayındır

Ağustos, 2013

Pyren çok halkalı aromatik bir hidrokarbon bileşiktir. İki pyren molekülünün çok

yakın etkileşimiyle oluşan ekzimer ışımasından dolayı pyren, yaygın bir şekilde

tespit edici ve algılayıcı molekül olarak kullanılmaktadır. Bu çalışmada, par-

lak pyren ekzimer ışımasına sahip mezo boşluklu ince filmler hazırlanmıştır ve bu

filmlerin; hızlı ve gözle görülebilir nitroaromatik patlayıcı buharı tespitinde uygu-

laması gösterilmiştir. Işıyan filmler, pyren moleküllerinin basit bir sol-jel meto-

duyla kalıp molekül kullanmadan üretilen, mezo boşluklu organik olarak modifiye

edilmiş silika (ormosil) yapıya fiziksel olarak hapsedilmesiyle elde edilmiştir.

Hem boşluklu hem de boşluksuz ormosil ince filmlerde pyren ekzimer-

lerinin oluşumu ve kararlılığı incelemiştir. Boşluklu filmlerde ekzimer ışımasının

boşluksuz filmdekine oranla önemli derecede daha parlak ve daha kararlı olduğu

görülmüştür. Pyren ekzimerlerinin boşluklu filmlerdeki beklenmedik kararlılığı,

pyren moleküllerinin nano ölçekli boşluğa sahip ormosil yapıda sıkıştırılmasından

kaynaklanmaktadır. Bu çalışmada, içine pyren hapsedilmiş boşluklu ve flo-

resan filmlerin nitroaromatik patlayıcı algılama işlevleri incelenmiştir. Film-

ler, TNT buharına maruz bırakıldığında hızlı ve gözle görülebilir bir floresans

sönümlenme göstermiştir. Yaklaşık 100 nm kalınlığındaki boşluklu bir filmin, 30

saniye boyunca TNT buharına maruz bırakıldıktan sonra floresans sönümlenme

verimi % 55,6 olarak hesaplanmıştır. Filmlerin floresans sönümlenmesinin UV

ışığı altında kolay bir şekilde gözlemlenebilmesi, nitrolu patlayıcıların çıplak

gözle tespitine olanak sağlamaktadır. Ekzimer ışımasının, birçok aromatik ve

aromatik olmayan bileşik arasında trinitrotoluen (TNT), dinitrotoluen (DNT)

ve nitrobenzen (NB) gibi nitroaromatik bileşiklere karşı seçici özellik gösterdiği
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gözlemlenmiştir. Ayrıca, filmlerin sönümlenmiş ekzimer floresansı; filmlerin su ile

kolay bir şekilde yıkanmasıyla geri kazanılabilmektedir. Filmlerin en az beş kez

yıkanıp tekrar kullanılabildiği gösterilmiştir. Bundan dolayı, pyrenli ormosil ince

filmler nitroaromatik patlayıcı tespiti uygulamaları için basit malzemeler olarak

sunulabilir.

Anahtar sözcükler : Pyren, ekzimer, ormosil, sol-jel, ince film, nitroaromatik pat-

layıcı tespiti.
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Budunoğlu for her supports.

I am grateful for my father Ahmet, my mother Aysel, my sister Betül and my

brother Burak for their endless love and supports. Finally, I would like to thank

Ahmet Dündar Sezer for his support and helps throughout my studies.
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Chapter 1

Introduction

Pyrene and its derivatives, with their high quantum yield and chemical stabil-

ity, are well-studied fluorophores for molecular labeling and fluorescent sensing

applications [1, 2]. Pyrene has two main emission bands; first one is the emis-

sion of pyrene monomers (i.e., distance between molecules is larger than ∼1 nm)

between 370 and 400 nm and second is the emission of pyrene excimers (i.e.,

distance is smaller than ∼1 nm) at around 470 nm [3]. The bright and visible

emission of pyrene excimers is particularly interesting because it is very sensi-

tive to the micro-environmental conditions such as temperature, pressure or pH

[1]. In addition, the excimer emission can be affected by guest molecules and

accordingly it can be used to detect various classes of chemicals including gases,

organic molecules and metal ions [4, 5, 6, 7, 8, 9]. In particular, pyrene excimer

emission can be rapidly quenched via exposure to nitroaromatic explosives based

on electron-transfer between π-π∗ stacked pyrene molecules and nitroaromatic

molecules [10, 11, 12].

Therefore, thin films containing pyrene excimers are very promising materials

as fluorescence sensors for numerous vapor phase analytes. However, preparation

of thin films with strong pyrene excimer emission is challenging due to the easy

dissociation of the pyrene excimers to monomers during solvent evaporation [13].

Most preferred method to prevent dissociation of excimers is covalent attach-

ment of pyrene moieties to the thin film network [14]. Nevertheless, it is reported
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that poor and unstable excimer formation can be observed even for the cova-

lently bonded pyrene molecules [15]. Furthermore, covalent attachment of pyrene

derivatives requires tedious and costly organic synthesis steps. Another method

is the physical encapsulation of pyrene fluorophores during thin film preparation

[11, 12, 14]. In order to observe excimer emission, polymers such as polystyrene

(PS) or polyethersulfone (PES), which are structurally similar to pyrene must be

used. In most of the studies, strong excimer emission is observed by using thin

films prepared from these polymers. However, time-dependent excimer stability

is not considered in these studies [11, 12, 16, 17]. Beside poor stability of excimer,

another drawback of physical encapsulation method is the use of dense polymers

as thin film networks. The analyte diffusion through the dense polymer matrix

take very long times and as a result, sensing performances of the films decrease

[18, 19, 20]. Very thin (< 100 nm) films can be prepared in order to eliminate this

effect; however, measurements with very thin films are not reliable and reprod-

ucable due to low fluorescence signal [14]. Apparently, porous thin films where

transport rate of analytes is higher and therefore fluorescence response is faster,

are more suitable than their nonporous counterparts for vapor phase fluorescent

sensing.

In this thesis, we report formation of pyrene excimers in porous thin films, to

our knowledge, for the first time and their fluorescence quenching performance

against nitroaromatic explosive vapors. We used mesoporous organically modi-

fied silica (ormosil) thin films, which were prepared using a facile template-free

sol-gel method as porous scaffolds, and we physically encapsulated the pyrene

molecules in the ormosil network during synthesis without making any chemical

modification to the pyrene. We also investigated the stability of pyrene excimers

in the porous ormosil films. It is important to note that although the disso-

ciation of meta-stable pyrene excimers is very favorable in thin film systems,

this phenomenon was rarely explored. In fact, the dissociation of pyrene ex-

cimers has been frequently used to evaluate the structure of the sol-gel materials

[21, 22, 23, 24]. Surprisingly, we observed that the excimer emission is very stable

in porous films (up to at least a week), whereas emission rapidly quenches in their

nonporous counterparts within minutes. It is believed that the improved stability
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of the pyrene excimers in porous films is due to the nanoscale confinement of the

pyrene excimers in the porous ormosil network.

We analyzed the nitroaromatic explosive sensing performances of porous thin

films for trinitrotoluene (TNT), dinitrotoluene (DNT) and nitrobenzene (NB).

It is observed that fluorescence quenching efficiencies are as high as 18.2% and

19.9% for TNT and DNT, respectively, after ten seconds. The rapid fluores-

cence quenching of porous ormosil films can be observed visually under UV light.

The selectivity of the sensor against nitroaromatic compounds was demonstrated

by using vapors of various aromatic and nonaromatic molecules. Furthermore,

quenched excimer emission of the porous ormosil films can be largely recovered

by simply washing the films with water. Accordingly, we showed that the films

are reusable at least for five quenching-recovery cycles.
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Chapter 2

Basic Concepts and Review of

the Literature

2.1 The Sol-Gel Process

Sol is composed of freely dispersed colloidal particles in a liquid whereas gel is

a rigid network including interconnected particles and pores with submicrometer

sizes. Sol-gel process represents the formation of a sol which then turns to a rigid

gel network [25]. Sol-gel method is a versatile way with its mild operation condi-

tions and high product yield. Since silica is one of the most widely used inorganic

material, the sol-gel chemistry of silica is emphasized. Silica sol-gel process en-

ables organic-inorganic hybrid materials synthesis which combines the stiffness of

inorganic group (silica), chemical functionality and flexibility of organic groups.

Organically modified silica materials can also be produced by encapsulating or-

ganic and organometallic species within sol-gel matrices by impregnation, physical

entrapment and covalent bonding via the sol-gel process [26, 27].

Sol-gel process is composed of hydrolysis and condensation of liquid alkoxide

precursors made of silicate monomers such as tetramethyl orthosilicate (TMOS)

and tetraethyl orthosilicate (TEOS). The reactions of silicates are shown in Fig-

ure 2.1 [25]. Hydrolysis and condensation reactions of alkoxides are generally
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Figure 2.1: Reaction types of silicates.

carried out in the presence of catalyst such as acid or base in order to achieve

high reaction rates. Silicate monomers are first hydrolyzed with water through

an acid or base catalysed hydrolysis reaction as illustrated in Figure 2.2, where R

is a functional (alkyl) group such as methyl or ethyl [28]. Alkoxide groups (OR)

are replaced by hydroxyl groups (OH) during the hydrolysis step.

Then, hydrolyzed silicate monomers link their Si-OH group to Si-OH group of

Figure 2.2: Hydrolysis mechanism for silicate monomers.
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Figure 2.3: Condensation mechanism for silicate monomers.

another hydrolyzed monomer forming Si-O-Si (siloxane) bonds through the con-

densation reaction as illustrated in Figure 2.3. When the catalyst and monomers

are mixed, hydrolysis and condensation reactions occur simultaneously at every

site of the mixture. Linking of further Si-OH groups eventually forms SiO2 net-

work [28]. This resultant SiO2 network exists as sol which includes submicrometer

sized colloidal particles. The functional R groups which are individually linked to

Si atoms in the initial monomer can not be hydrolized (Figure 2.3). As a result,

they remain unchanged until the whole SiO2 network forms which paves the way

for the production of functional silica based materials by tuning the R groups.

2.2 Mesoporous Silica Materials

Mesoporous materials with their nanoporous characteristics and high surface area

(1500 m2/g) are used in various applications including catalysis, adsorption and

sensor [26, 27]. These materials can have ordered or disordered pores with sizes

varying between 2 and 50 nm [29]. Among all types of mesoporous materials,
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silica based materials are one of the most widely used since they provide surface

functionalization, optical transparency, robustness beside their porous nature.

Mesoporous silica materials were firstly produced by Mobil Research and Devel-

opment Corporation [30, 31]. Researchers described the family of M41S meso-

porous materials with periodic pores. They also described MCM-41 structure

from this family with hexagonally arranged structure and uniform pores whose

sizes can be tailored from 1.5 nm to greater than 10 nm [30, 31].

Mesoporous silica based materials can be prepared via template based or tem-

plate free approaches. Template-directed synthesis provides more ordered pore

structure and tunable porosity in mesoporous silicas compared to template free

method [26, 27]. Mesoporous silica materials have been applied in catalysis, ad-

sorption, sensor, functional surface and biomedical applications [32, 33, 34, 35].

They can be produced in different forms in accordance with the desired appli-

cation. In Figure 2.4 examples of the various mesoporous silica forms such as

particle, thin film and aerogel are shown [34, 36, 37]. Mesoporous silica parti-

cles have been particularly applied in biomedical and sensor applications [34, 38].

Mesoporous silica thin films are produced by coating sol-gel derived sols on sub-

strates by different techniques such as spin, spray and dip coating. Thin films

are generally used for functional surface preparation [35]. Finally, aerogels are

produced by drying the sol-gel derived wet silica gels at supercritical conditions.

Aerogels are considered as insulation materials and hosts for many organic and

inorganic molecules [39, 40].

2.2.1 Template Based Preparation of Mesoporous Silica

Materials

Template based mesoporous silicas with ordered structure and uniform pore size

varying in the range of 2-30 nm are produced from alkoxide monomers (TMOS

or TEOS) via surfactant templating approach. In Figure 2.5, the mechanism for

the formation of mesoporous silica network by surfactant-directed approach is

shown [41, 42]. Basically, surfactant molecules interacts with alkoxide monomers
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Figure 2.4: Different forms of mesoporous silica. (a) particles, (b) thin film and
(c) aerogel.

through non-covalent interactions resulting in self-assembly which can occur in

hexagonal rod, lamellar crystal and spherical micelle organizations. Simultane-

ously, covalent bonds are formed between inorganic Si blocks of the monomer

via condensation reaction resulting in a liquid crystalline-surfactant composite.

This process is known as cooperative assembly. On the other hand, a subse-

quent condensation reaction between Si atoms may occur around a pre-formed

surfactant phase which is known as liquid crystal templating (LCT) mechanism.

Mesoporous silica network is formed after surfactant removal by calcination or

solvent extraction. The size and shape of the mesoporous silicas can be tuned;

hexagonal, cubic and lamellar orderings can be obtained by changing surfactant

type and surfactant concentration [41, 42].

2.2.2 Silica Aerogels: Template Free Prepared Meso-

porous Silica Materials

Aerogels are a specific class of randomly porous materials with very low-density

and high porosity up to approximately 90%. Aerogels can be prepared with a

wide material classes ranging from inorganic oxides such as silica and titania to

polymers. Among all the classes, silica based aerogels have gained the highest

importance for their low refractive index, high transparency and low thermal
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Figure 2.5: Template based synthesis of mesoporous silica from alkoxide
monomers.

conductivity. In order to obtain a silica aerogel, firstly a wet silica gel is produced

via the sol-gel process. Then the liquid in pores of the gel is removed through a

supercritical drying process resulting in a low density porous gel called as aerogel.

On the other hand, a xerogel is obtained with shrinked pores when the wet gel is

dried at ambient conditions [43].

Aerogels were prepared by Kistler for the first time in 1931. He produced

aerogels of silica, alumina, ferric oxide, cellulose by removing liquid from syn-

thesized wet gels via supercritical drying [44, 45]. After his studies, supercritical

drying method have been applied as the most efficient method for the aerogel

preparation.

In the supercritical drying process, pressure and temperature of the container

are increased over the critical pressure (Pc) and critical temperature (Tc) of the

liquid in the container. Thus, the surface tension of liquid is decreased by convert-

ing it to a supercritical liquid and consequently the capillary pressure is avoided

on the pore walls of the gel being dried resulting in highly porous gels.

In the ambient drying process, pore collapse occurs due to the high capillary

force on the pores and gels become nonporous. Brinker and co-workers reported

a novel method for the preparation of aerogels which possess 98.5% porosity

despite the ambient drying conditions [46]. They added surface groups to the gel
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Figure 2.6: Stages of structural evolution of aerogel film during evaporation of
liquid and spring-back effect.

network in order to prevent pore collapse during the ambient pressure drying.

The structural changes in the pores during evaporation of the liquid is shown in

Figure 2.6. In the region between A and B gelation occurs. The sol at this stage

is highly concentrated and polymerization can continue. B-C region shows initial

drying stage and pores of the gels shrink due to the capillary pressure created

by evaporating liquid in this stage. C-D region shows complete removal of the

liquid and in this stage, the sol exhibits spring-back behavior and expands to the

original state because of organically functionalized surface [46].

2.2.3 Ormosils

Organically modified silicas (ormosils) are produced from organotrialkoxysilanes

via the sol-gel reactions. Organotrialkoxysilanes having RSi(OR)3 formula differ
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from tetraalkoxysilanes (Si(OR)4) by possessing a non-hydrolyzable functional

(R) group substituted with an alkoxy (OR) group. A few examples of well known

functional groups are methyl, ethyl, octyl, phenyl, aminopropyl, and mercap-

topropyl [40]. Those alkyl groups give the gel different functional properties

such as hydrophobicity, flexibility and mechanical stability. The condensation

products of organotrialkoxysilanes are known as silsesquioxanes with the general

formula RSiO1.5 and polymers formed from interconnected silsesquioxane units

are polysilsesquioxanes.

Alkyl groups, solvent polarity, pH and temperature affect gel structure and

macro-meso porosity. Since most of the alkyl groups are intrinsically hydrophobic,

they cause phase separation in polar solvent media resulting in a heterogeneous

distribution of condensates. In addition, hydrolysis and condensation reactions

become slower due to phase separation. Reactivity of the alkyl groups also affects

the homogeneity of the gel. Trialkoxysilanes with small substitutes such as methyl

form more homogenous gels compared to those with larger alkyl groups such as

vinyl or phenyl [40].

In recent years there has been great attention on ormosils for the prepara-

tion of functional surfaces since ormosils offer mild, cost-effective synthesis and

coating conditions. The properties which can not be achieved by glasses and

polymers alone can be obtained with ormosils in one material. Ormosils can

possess the mechanical and thermal stability of inorganic (silica) groups besides

functionality and flexibility of organic groups. Furthermore, the chemical and

physical properties of ormosils can be tailored accordingly with the targeted ap-

plication. In Figure 2.7 examples of functional surfaces prepared from ormosils

are shown [47, 48]. In these studies, superhydrophobic and highly transparent

ormosil coatings were prepared on glass and various flexible substrates.

Ormosils can interact with doped molecules via noncovalent interactions. This

property of ormosils permits to the physical entrapment of fluorophores and

nanoparticles in ormosil matrices. Noncovalent interaction types are ionic, hy-

drophobic interactions, hydrogen bonding and nanoconfinement. Ionic interac-

tions occur between cations and Si-O- sites of ormosils. Hydrogen bonding occurs
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Figure 2.7: Functional surfaces prepared from ormosil. Photographs of (a) super-
hydrophobic film on glass with a water contact angle 178.4◦ (b) superhydrophobic
film on flexible substrate, (c) transparent film on flexible substrate and (d) SEM
image of porous ormosil film.

between dopants and silanols (Si-OH). Hydrophobic interactions occur between

hydrophobic dopants and organic groups of ormosil. Nanoconfinement effect on

the doped molecules is originated from the steric restraints in porous silica matrix

[49].

2.3 Pyrene Excimer Formation in Thin Films

Pyrene is a fluorescent, polycyclic aromatic hydrocarbon compound. It has been

an attractive sensing and probing molecule for an expanded range of applica-

tion since it has long lifetime and high quantum efficiency. When two pyrene

molecules interact via π-π∗ stacking which is a non-covalent interaction occurring

between aromatic molecules, an excimer forms. Pyrene excimers demonstrate

high sensitivity to microenvironmental changes [1].
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Figure 2.8: Potential energy diagram for pyrene excimer formation.

Molecular fluorescence spectrum of pyrene consists of different vibration bands

which correspond to the radiative transitions from the first π electronic excited

singlet state S1 to different vibration levels of the ground singlet state S0 (Fig-

ure 2.8) [3]. When pyrene forms excimer, a fluorescence band at lower energies

than the fluorescence of singlet excited pyrene (monomer) originates.

Figure 2.9 shows the fluorescence spectrum of pyrene. The fluorescence of a

singlet excited pyrene molecule shown in (2.1) is observed at 374, 384 and 394

nm in the spectrum. (M∗ is singlet excited molecule, M: unexcited molecule)

M∗ −→M + hvM (2.1)

The interaction of the singlet excited pyrene with an unexcited pyrene yields

an excited dimer (D∗) as depicted in (2.2).
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Figure 2.9: Fluorescence spectrum of pyrene showing the monomer and excimer
emission of pyrene molecules.

M∗ +M −→ D∗ (2.2)

The relaxation of the excited dimer radiates light as depicted in (2.3) at a

broad wavelength range centered around 470 nm [3, 50].

D∗ −→M +M + hvD (2.3)

Pyrene excimers give fluorescence response to the molecular changes [1, 2].

For example, pyrene excimers are applied as probe molecules for the examining

structural changes in nucleotides of DNA. Pyrene functionalized probe nucleotides

are prepared by replacing pyrene with nucleobase or attaching pyrene to nucle-

obase or sugar moieties of DNA fragments [51]. An example probing mechanism
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Figure 2.10: Schematic of probing DNA strand matches by pyrene functionalized
DNA fragment.

by pyrene functionalized DNA fragments is shown in Figure 2.10. In this study,

probe exhibits excimer emission upon hybridization of DNA strand with comple-

mentary DNA. On the other hand, probe does not exhibit excimer emission with

mismatched DNA since pyrene molecules in the probe DNA and target DNA can

not encounter and form excimer [52].

Pyrene is encapsulated in thin films or covalently attached to surfaces which

are prepared for nitroaromatic explosives sensing [12, 53, 54]. As pyrene excimers

can interact with nitroaromatic explosives via π-π∗ stacking and give electron to

the electron deficient nitroaromatic explosives such as trinitrotoluene (TNT),

fluorescence of pyrene excimer is quenched in the presence of nitroaromatics.

Figure 2.11a shows scanning electron microscope (SEM) image of a pyrene doped

polystyrene fiber based thin film. In this study, fluorescence of pyrene excimer is

quenched against dinitrotoluene (DNT) vapor (Figure 2.11b) [11].

Pyrene excimer formation is a prerequirement for all visible fluorescence based
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Figure 2.11: (a) SEM image of pyrene doped polystyrene fiber based thin film.
(b) Fluorescence quenching response of the film to DNT molecule.

probing and sensing applications. In order to form pyrene excimer, an electroni-

cally excited pyrene must interact with ground state pyrene at an intermolecular

distance less than 1 nm [3, 50]. Furthermore, pyrene excimers with excimer

emission are promoted to form at high concentrations. On the other hand, only

monomer emission occurs at low concentrations. Pyrene excimer formation is

controlled by diffusion in solution phase, whereas it is controlled by the chemical

and physical structure of its environment in thin films where diffusion is very slow

[13].

Physical encapsulation is applied by mixing pyrene with thin film depositing

solution of polymers such as polystyrene which is structurally similar with pyrene.

Pyrene can be simply trapped in the polystyrene environment via π-π∗ stacking

interaction with phenyl groups of polystyrene. Pyrene can also be trapped within

a sol-gel derived silica matrix by dissolving in the gel synthesis solution. A silica

aerogel monolith doped with a pyrene derivative is shown in Figure 2.12 [5]. Flu-

orescence of the encapsulated pyrene in the silica aerogel monolith can be clearly

observed under UV light. Pyrene can also be covalently attached to substrates

via self-assembled monolayer (SAM) approach [53, 54].
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Figure 2.12: Photographs of a pure silica aerogel monolith (left) and of a silica
aerogel monolith doped with pyrene derivative (right) under UV light.

2.4 Explosive Detection Methods

Identification and quantitative analysis of explosives have been an important

concern due to the security threats. Trace, surface and vapor explosive detecting

instrumentation and methods have been developed for screening people, packages,

luggage and vehicles.

Fixed or portable instrumentation are used to detect explosives. Detection

speed, sensitivity and selectivity are considered properties in the design of the

instruments. In addition, cost efficiency, reliability and portability are significant

parameters for explosive sensors. As an effective method, canines are trained on

specific explosive molecules and used for the detection of explosives since they

have extremely sensitive nose. Although using canines is very efficient, there are

some problems related to training them such as high training cost and decreasing

performance due to behavioral changes in these animals [55, 56].

2.4.1 Properties of Explosives

Explosive is a material containing very unstable molecules which lead very fast

reaction rates, large amount of heat and gaseous generation. Explosive reactions
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are initiated by shock or heat which results in a rapid expansion and very fast de-

composition in the material. Most of the explosives contain nitrogen and oxygen;

in a less extent, carbon and hydrogen [55, 56].

Explosives are divided into two main classes as low and high explosives. Low

explosives decompose at low rates (cm s-1) without forming shock whereas high

explosives lead huge shock with velocities varying from 1 to 9 km s-1. High explo-

sives are separated into two groups as primary and secondary explosives according

to their properties and functions. Primary explosives (e.g. peroxide based) are

the types which are more susceptible to heat, friction. Their handling is very

difficult due to their fast initiation. Secondary explosives include nitroaromat-

ics (e.g. TNT), nitramines (Tetranitro-N-Methylaniline) and nitrate esters (e.g.

nitroglycerine). Secondary explosives are usually used by military sites [57].

Detection methods vary depending on the property of the explosives. For

instance, vapor phase methods depend on vapor pressure of the explosives. Vapor

pressures and boiling points of some explosives are shown in Table 2.1. Some of

the explosives such as nitromethane and trinitrotoluene (TNT) have very high

vapor pressures, which enable vapor phase techniques applicable. On the other

hand, vapor techniques are difficult to apply for low vapor pressure explosives

such as tetryl and picric acid. Vapors of explosives are further prevented due

to packaging of the explosives using special materials which make the detection

extremely difficult. Detection of explosive particles adhered on surfaces are more

efficient for low vapor pressure explosives since their traces do not disappear

quickly from the exterior of packaging [55].

2.4.2 Common Explosive Detection Methods

Detection of explosives is generally performed by using metal detectors and in-

strumental analysis techniques. However, using metal detectors is unsuitable

in the case of plastic packaging of explosives. Instrumental techniques include

mass spectroscopy (MS), gas chromatography with mass spectroscopy (GC)-MS,

infrared spectroscopy (IR) and Raman spectroscopy [58].
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Table 2.1: Vapor pressures and boiling points of some explosives.

Explosive Boiling Point Vapor Pressure
(◦C) at 20◦C (Torr)

Nitromethane 100 2.8 x 10-1

2,4,6 Trinitrotoluene (TNT) 240 (explodes) 1.1 x 10-6

Ethylene glycol dinitrate (EGDN) 114 (explodes) 2.8 x 10-2

Tetranitro-N-Methylaniline (Tetryl) 187 (decomposes) 5.7 x 10-9

Ammonium nitrate 210 (decomposes) 5.0 x 10-6

Picric Acid (2,4,6 trinitrophenol) 300 5.8 x 10-9

Among the instrumental techniques, mass spectroscopy has been the leading

method in sensitive and selective explosive sensing. Ion mobility mass spectrom-

etry (IMS) is the most widely used method since it can be integrated with a

portable device. IMS is used in airports and its sensitivity is in the range of

nanogram, however, it is an expensive method [55, 56].

Raman spectroscopy has been showed to detect explosives at stand-off dis-

tances and portable Raman instruments have been designed for field use. Fluo-

rescence interferences and weak Raman signals are the major problems with Ra-

man Spectroscopy. Surface Enhanced Raman Spectroscopy (SERS) is developed

to increase the Raman intensity and sensitivity by using metal nanostructures

[55]. In Figure 2.13a, an example SERS paper prepared with gold nanorods and

TNT binding peptides is shown. In this study, gold nanorods were prepared in

order to enhance Raman signals and sensitivity of the sensor paper for TNT. It is

shown that strong Raman signals can be observed with 10 µg TNT by using the

prepared SERS paper (Figure 2.13b) [59]. However, poor selectivity and lack of

facile methods to produce SERS substrates for field use are two major problems

with SERS.

19



Figure 2.13: (a) SEM image of a SERS substrate prepared for the detection of
TNT. Inset shows the photographs of SERS paper (left) and bare paper (right)(b)
Raman signal before and after SERS paper was exposed to TNT.

2.4.3 Fluorescence Quenching Based Explosive Detection

Methods

Although GC-MS methods are sensitive and selective, they are expensive. There-

fore, low-cost and facile devices and methods are required for the detection of

explosives. Nitroaromatic explosives constitute a significant part of explosives

and since they can interact with electron donating fluorescent molecules, they

can be detected via fluorescent quenching based method. [60].

Nitro groups withdraw electron making the nitroaromatic molecules good elec-

tron acceptors. On the other hand, delocalized π∗ excited states in the fluores-

cent dyes and fluorescent conjugated polymers make them good electron donors

and facilitates electron-transfer fluorescence quenching. Fluorescence and fluo-

rescence quenching mechanism of a fluorescent molecule in the absence and in

the presence of a nitroaromatic molecule is shown in Figure 2.14. In the absence

of nitroaromatic molecule, excited electron relaxes back to the ground state by

emitting light. In the presence of nitroaromatic molecule, the excited electron

is transferred from the electron donor fluorescent molecule to the LUMO of the

nitroaromatic molecule instead of relaxing back to the ground state [60]. There-

fore, fluorescence intensity of the electron donor is quenched in the presence of a
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Figure 2.14: Mechanisms of fluorescence and electron transfer fluorescence
quenching of an electron donor molecule.

nitroaromatic molecule.

As the number of nitro groups increases, redox potential of nitroexplosive

increases. Redox potentials of nitrobenzene (NB), dinitrotoluene (DNT) and

trinitrotoluene (TNT) are -1.15 V, -1.0 V and -0.7 V, respectively indicating that

TNT is better electron acceptor compared to DNT and NB. However, since DNT

and NB have higher vapor pressure than TNT, they can more highly quench

fluorescence of sensing molecules compared to TNT [60].

Fluorescent conjugated polymers are commonly prepared as nitroaromatic

explosive sensing materials since they respond with amplified signals and high

sensitivity in parts per million (ppm) and parts per billion (ppb) levels. Con-

jugated polymers have increased delocalization in their π∗ excited states, which

allows efficient exciton migration. Signal amplification in conjugated polymers is

enabled by efficient exciton migration. Thin films of conjugated polymers with

thickness less than 10 nm are more efficient than those with thickness higher
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than 20 nm due to increased diffusion rate of explosive vapors within the thinner

polymer structure [58].

Fluorescent, polycyclic aromatic hydrocarbons (PAHs) such as pyrene and

anthracene can be used as nitroaromatic explosive sensing molecules by physi-

cally encapsulating in matrices or covalently binding to surfaces [11, 12, 53, 54].

These molecules with their π∗ conjugated molecule structure can interact with

nitroaromatic explosives which provides fast fluorescence quenching response [61].

Porphyrin and its derivatives are electron donating fluorescent dyes and they

are doped in silica, polystyrene fibers; physically or covalently incorporated in

mesoporous silica thin films for nitroaromatic molecule sensing applications. Flu-

orescence of porphyrin is quenched against explosives such as TNT and DNT due

to high affinity of porphyrin for nitroaromatics via hydrogen bonding and π-π∗

stacking interaction. In several studies, it is shown that porphyrin doped fluores-

cent films can be prepared by using simple methods and fluorescence of porphyrin

can be quenched against TNT via the electron transfer quenching mechanism

(Figure 2.15) [18, 62, 63, 64, 65].

Pyrene among the fluorescent molecules has very advantageous with its high

quantum efficiency, long lifetime and high sensitivity to its micro-environment.

For example, pyrene gives faster response to nitroaromatic explosives compared to

porphyrin because of its similar structure to nitroaromatics and its π-π∗ stacking

interaction with nitroaromatics. Furthermore, fluorescence quenching of pyrene

in the presence of nitroaromatics can be visually observed under UV-light illumi-

nation.
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Figure 2.15: Schematic for electron transfer quenching of porphyrin fluorescence
by TNT.
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Chapter 3

Experimental

3.1 Materials

Methyltrimethoxysilane (MTMS), dimethylsulphoxide (DMSO), methanol, oxalic

acid and ammonium hydroxide (25%) were purchased from Merck (Germany).

Ethanol, hydrochloric acid (37%) and pyrene were purchased from Sigma-Aldrich.

All chemicals were used as received without any purification.

3.2 Characterization

3.2.1 Transmission Electron Microscopy (TEM)

Transmission Electron Microscope (Tecnai G2-F30, FEI) operated at 200 kV was

used to investigate the structure of ormosil colloids. TEM samples were prepared

on a holey carbon coated copper grid by placing a 2 µL of colloidal ormosil

suspension used for film preparation.
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3.2.2 Scanning Electron Microscopy (SEM)

Scanning Electron Microscope (E-SEM, Quanta 200F, FEI) was used to carry out

the microstructural observations of the thin films at 10 kV, under high vacuum

condition. 7 nm thick gold-palladium layer was coated on the films before placing

the films in the microscope.

3.2.3 Atomic Force Microscopy (AFM)

Atomic Force Microscope (XE-100E, PSIA) was used in non-contact mode to

analyze the surface morphology of the films.

3.2.4 X-Ray Photoelectron Spectroscopy (XPS)

X-ray Photoelectron Spectroscopy (K-Alpha, Thermo Scientific) was used to per-

form the chemical analysis of the films coated on silicon substrates. XPS mea-

surements were performed after surfaces of the films were slightly etched by ion

gun. The data was collected at survey mode and flood gun was operated in order

to prevent charging of the surfaces.

3.2.5 UV-Visible Spectroscopy

UV-Vis Spectrophotometer (Cary 100, Varian) was used to record the absorption

spectrum of the pyrene doped colloidal ormosil solution. UV-Vis spectra were

recorded between 200 and 800 nm in absorption mode.

3.2.6 Fluorescence Spectroscopy

Fluorescence Spectrophotometer (Varian Eclipse) was used to record the fluores-

cence spectra of the films. The spectrum was recorded between 360 and 650 nm
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with excitation at 340 nm in emission mode. Thin films were placed on a holder

at an angle of 45◦.

3.2.7 Ellipsometric Measurements

Ellipsometer (V-Vase, J. A. Woollam) was used to measure thickness and refrac-

tive indices of the films. The measurements are performed in the 400 to 1000 nm

range. The experimental results were fitted; thickness and refractive index values

were calculated by using Cauchy model as given in Eq. (3.1).

n(λ) = A+
B

λ2
+
C

λ4
(3.1)

where, n is refractive index, A (dimensionless), B (µm2) and C (µm4) are Cauchy

parameters.

3.2.8 Contact Angle Measurement System

A contact angle meter (OCA 30, Dataphysics) was used to measure the static

water contact angles of the prepared surfaces. For measurments, water droplets

of 4 µL volume were dispensed onto film and Laplace-Young fitting was applied

on the measurement.

3.3 Preparation of Pyrene Doped Mesoporous

Ormosil Thin Films

Ormosil thin films were prepared by modifying the previous methods [36, 37, 47,

48]. Ormosil gel was first prepared via two-step sol-gel reaction. First, 1 mL

of MTMS was added to the mixture of 4.88 mL of methanol and 3.88 mL of
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DMSO. Different amounts of pyrene was dissolved in 1 mL of DMSO and added

to MTMS solutions. For example, 20 mg of pyrene was used to prepare films

containing 4.14 mM pyrene. Then, 500 µL of 1.0 mM aqueous oxalic acid solution

was added dropwise to start the hydrolysis of monomer. Synthesis solution was

stirred for 30 minutes and then was left to hydrolyze completely for 24 hours at

room temperature. After hydrolysis step, 0.42 mL of ammonium hydroxide (25%)

solution and 0.19 mL of deionized water were added to the solution and it was

stirred for further 15 minutes. Finally, solution was poured into a polystyrene

vial and left for gelation at 25 ◦C. The gel was aged at this temperature for 48

hours in order to strengthen the porous network. After aging, different amounts

of methanol were added onto gel to adjust the film thickness and gel was sonicated

by an ultrasonic liquid homogenizer at 20 W for 45 seconds. For example, for

251 nm thick film 12 mL of methanol was added to the gel as diluting solvent.

Finally, an ormosil sol which is suitable for thin film deposition was obtained.

Glass substrates with 2 cm x 1 cm dimensions were cut, then cleaned in ethanol

and isopropanol mixture and finally dried. 250 µL portions of the ormosil sol

were dispensed onto glass substrates and were coated by using a spin-coater at

3000 rpm for 45 seconds. Porous thin films were left to dry at room temperature.

3.4 Preparation of Pyrene Doped Nonporous

Ormosil Films

We prepared the nonporous films by slightly modifying our previous method [36].

First, 2.25 mL of MTMS was dissolved in 1.12 mL of ethanol. 20 mg of pyrene

was dissolved in 1.12 mL of DMSO. Then, pyrene solution, 0.2 mL of deionized

water and 5 µL of 0.1 M hydrochloric acid were added under gentle stirring.

Synthesis solution was stirred at 60 ◦C for 90 minutes. After that, 0.4 mL of 0.1

M hydrochloric acid and 0.35 mL of deionized water were added and solution was

further stirred at ambient temperature for 15 minutes. Finally, sol was left for

aging at 50 ◦C for 15 minutes. 2 mL of the aged sol was diluted with 0.4 mL of

methanol in order to adjust film thickness around 275 nm. 250 µL portions of
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the sol were dispensed onto previously cleaned glass substrates and were coated

by using spin-coater at 3000 rpm for 45 seconds. Nonporous ormosil thin films

were left to dry at room temperature.

3.5 Nitroaromatic Explosive Sensing Experi-

ments

Approximately 10 mg of TNT was put inside a 15 mL vial and then, a piece of

cotton was placed onto top in order to prevent direct contact of film with TNT.

Vial was kept closed at least for 2 days prior to sensing experiments in order

to assure that TNT vapor reached equilibrium. Before exposing of porous film

to TNT vapor, emission of the film was recorded using fluorescence spectropho-

tometer. Then, film was placed onto the cotton piece in the vial and kept closed

for a specific time. After that the film was taken out of the vial and its emission

was recorded again. Samples of DNT, benzoic acid, ammonium nitrate and 3,4

dihydroxybenzoic acid (3,4 DHBA) were prepared similarly as done with TNT

and were kept in closed vials at least for 2 days prior to sensing experiments.

Samples of toluene, methanol, nitrobenzene, benzene and sodium hydroxide were

prepared by wetting a piece of cotton with a small amount of liquid analyte, then,

wetted cotton was kept in closed vial. Sensing experiments were performed with

all other analytes similarly as done with TNT.
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Chapter 4

Results And Discussion

4.1 Preparation and Characterization of Pyrene

Doped Ormosil Thin Films

In the scope of this thesis, we investigated the formation of pyrene excimers in

ormosil thin films and showed the application of those films for nitroaromatic

explosive sensing. In the first step, we prepared ormosil gels by using MTMS

monomer via a template-free sol-gel method. We dissolved the pyrene molecules

in DMSO and added to the starting reaction solution to obtain a final dye concen-

tration of 4.14 mM. We did not use any covalent binding agents for immobilizing

pyrene dye in the gel in order to eliminate tedious synthesis steps. During gela-

tion, pyrene molecules are physically encapsulated in the porous ormosil network.

The pyrene doped gel shown in Figure 4.1 (right) is homogenously fluorescent re-

vealing the successful encapsulation of pyrene. On the other hand, gel shown in

Figure 4.1 (left) which was prepared without adding pyrene has no fluorescence.

In the second step, we broke down the gel network by ultra-sonication in order to

obtain ormosil sols which are suitable for thin film deposition. In the final step, we

coated the ormosil sols onto glass substrates via spin-coating method. In order to

evaluate the effect of porosity on the formation and stability of pyrene excimers,

we also prepared nonporous ormosil thin films by using the same monomer and
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Figure 4.1: Photographs of the ormosil gels prepared with (right) and without
(left) pyrene under UV light illumination. Gel without pyrene has no emission
whereas the gel with pyrene has a very bright blue emission.

pyrene composition.

The porous and skeletal structure of pyrene doped ormosil colloids was in-

vestigated using a transmission electron microcopy (TEM). The TEM image in

Figure 4.2 reveals the mesoporous network which is formed from the intercon-

nected ormosil particles with diameter size of approximately 15 nm.

Surface morphology of the pyrene doped mesoporous ormosil film was inves-

tigated using a scanning electron microscope (SEM). Figure 4.3 shows the SEM

image of 4.14 mM pyrene doped approximately 100 nm thick-ormosil thin film

indicating uniform surface coverage and highly mesoporous film structure.

Surface of an approximately 1200 nm thick-film prepared with 4.14 mM pyrene

was investigated by using an SEM Figure 4.4(a). SEM image of that film indicates

more dense and compact film formation compared to the 100 nm thick-film due

to the high ormosil concentration in the sol prepared for thick film coating. Fur-

thermore, surfaces of approximately 250 nm thick-films prepared without pyrene

and prepared with 0.52, 1.04, 2.07 and 8.29 mM pyrene were also investigated

using an SEM. Images in the Figure 4.4(b-f) reveal that surface morphology and
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Figure 4.2: TEM image of the 4.14 mM pyrene doped ormosil.

Figure 4.3: SEM images of 4.14 mM pyrene doped approximately 100 nm thick-
mesoporous ormosil film. (a) Low magnification SEM image of the film. (b)
Higher magnification SEM image of the same film.
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Figure 4.4: SEM images of (a) 1202 nm thick-film with 4.14 nM pyrene and 250
nm thick-films with (b) no pyrene (c) 0.52 mM pyrene (d) 1.04 mM pyrene (e)
2.07 mM pyrene and (f) 8.29 mM pyrene.
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Figure 4.5: AFM image of the pyrene doped 100 nm thick-mesoporous ormosil
film.

porous structure of the films are the same regardless from the varying pyrene

concentration.

Surface morphology of the mesoporous ormosil film was also investigated by

using atomic force microscope (AFM). The AFM image of a 4.14 mM pyrene

doped approximately 100 nm thick-porous film shown in Figure 4.5 further reveals

the porous film formation. We also investigated the morphology of the nonporous

ormosil film with a thickness of approximately 275 nm using SEM and AFM

methods. Both methods indicate nonporous, dense and smooth structure of the

examined film (Figure 4.6).

Chemical analysis of the surface of 4.14 mM pyrene doped 250 nm thick-

film was carried out by using X-ray photoelectron spectroscopy (XPS). Oxygen

and silicon peaks in the spectrum shown in Figure 4.7 are originated from the

inorganic part of the ormosil network. Carbon peak is originated from pyrene

and methyl groups of the ormosil network. Oxygen, carbon and silicon contents

are found to be 37.23%, 19.8% and 42.97%, respectively.
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Figure 4.6: Surface morphology of the pyrene encapsulated 275 nm thick-
nonporous film. (a) SEM image and (b) AFM image of the nonporous film.
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Figure 4.7: XPS spectrum of 250 nm thick-ormosil thin film containing 4.14 mM
pyrene.
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Figure 4.8: Normalized absorption spectrum (black) of pyrene doped ormosil
colloid and normalized fluorescence spectrum (blue) of 4.14 mM pyrene doped 250
nm thick-ormosil thin film (Excitation wavelength is 340 nm). The inset shows
the photograph of the thin film which was taken under UV light illumination.

Thicknesses and refractive indices of the films were measured using a spectro-

scopic ellipsometer. Refractive indices (at 600 nm) were measured as 1.166 and

1.42 for 251 nm porous and 275 nm nonporous films, respectively. Using the mea-

sured refractive indices of the films and Eq. (4.1) (np, naand nd are the refractive

indices of porous film, air and nonporous film, respectively), the porosity of the

251 nm porous ormosil thin film was calculated to be 60.5%.

Porosity =

[
nd − np

nd − na

]
(4.1)

Absorption spectrum of pyrene in ormosil colloidal solution consists of a strong

peak at 336 nm and a weaker peak at 321 nm, which are consistent with the
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vibrational bands of pyrene (Figure 4.8) [3].

Two characteristic emission bands of pyrene were observed in the porous or-

mosil film (Figure 4.8). First main band is the monomer emission which consists

of three individual peaks at 373, 385, 394 nm indicating the presence monomeric

pyrene molecules. Second band is the excimer band with a fluorescence maximum

at around 466-470 nm and corresponds to the formation of excimers through π-

π∗ stacking interaction of two pyrene molecules. Excimer emission of pyrene

doped mesoporous ormosil film is very intense compared to monomer emission

which is simply achieved by the physical encapsulation of pyrene excimers in the

porous ormosil network. Also, the bright blue emission of pyrene excimers can

be observed visually under UV light illumination (inset in Figure 4.8).

We prepared several 250 nm thick-porous ormosil thin films with different

amounts of pyrene. Their fluorescence spectra are shown in Figure 4.9(a). As

the pyrene concentration increases, both monomer and excimer emission inten-

sities increase. A weak excimer emission for the film prepared using ormosil sol

containing 0.52 mM pyrene is observed due to the lack of π-π∗ stacking between

pyrene molecules. When pyrene concentration is increased to 2.07 mM or above, a

bright excimer emission can be observed. The concentration dependent enhance-

ment of pyrene excimer emission can be attributed to the decreasing distance

between pyrene molecules at higher concentration and consequently increasing

π-π∗ stacking possibility between pyrene molecules. We also calculated the ra-

tios of excimer emission intensity to monomer emission intensity (Iexc/Imon) for

varying pyrene concentration. It is observed in Figure 4.9(b) that Iexc/Imon ratio

has an exponentially increasing behavior with respect to the pyrene concentra-

tion. The Iexc/Imon ratio is 0.46 for the film containing 0.52 mM pyrene indicating

poor excimer formation. On the other hand, it is 4.09 and 14.34 for the films

containing 4.14 mM and 8.29 mM pyrene, respectively, demonstrating that most

of the pyrene molecules formed excimers in these porous films. Accordingly, we

determined an optimum pyrene concentration to be 4.14 mM in order to obtain

bright excimer emission and we used this pyrene concentration in the rest of the

study.
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Figure 4.9: Effect of pyrene concentration on excimer emission intensity.
(a)Fluorescence spectra of the films containing different amounts of pyrene. (b)
Ratio of the excimer emission intensity to monomer emission intensity (Iexc/Imon)
with respect to pyrene concentration. (Intensities at 470 nm and 394 nm in the
spectra given in (a) were considered for excimer emission and monomer emission,
respectively).
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4.2 Stability of Excimer Emission

Formation and emission intensity of pyrene excimers are strongly depended on the

environment of the pyrene molecules. Excimer formation is controlled by diffusion

in solution phase. However, excimers can aggregate in thin films which results in

self-quenching and weak excimer fluorescence since solvent does not exist in thin

films. There are ways which can be used to decelerate or eliminate aggregation.

One way is the binding of molecules in the matrices or in the surfaces which

prevent excimer aggregation due to steric hinderance. The other way is tuning

the microstructure of the films. For example, mesoporous ormosil film structure

with its randomly distributed organic groups in its nanoscale silica walls can be an

efficient restriction environment to prevent the aggregation of pyrene molecules.

Accordingly, we investigated the formation and stability of pyrene excimers in

mesoporous ormosil thin films.

In order to evaluate the formation and stability of pyrene excimer emission,

we monitored the emission intensities of porous and nonporous films at different

time intervals. Figure 4.10 and Figure 4.11 show the emission spectra of pyrene

doped mesoporous film and nonporous film, respectively. Porous ormosil film

demonstrates a bright excimer emission with a high Iexc/Imon ratio of 4.09. On

the other hand, nonporous film has a significantly lower Iexc/Imon ratio of 0.76.

More importantly, the excimer emission intensity of the nonporous film almost

completely quenched after 2 hours. Interestingly, the monomer emission of the

nonporous film also quenched. This may be due to the increased aggregation of

pyrene molecules during drying process, which self-quenches the emission of the

monomer [50]. Porous ormosil film, on the other hand, revealed very slow decrease

in the excimer emission compared to the nonporous film. Although the excimer

emission of the porous film decreased gradually with time, it demonstrated very

bright excimer emission even after one week. Figure 4.12 shows the change in the

Iexc/Imon ratio of porous and nonporous films with respect to time. As previously

mentioned, Iexc/Imon ratio of the nonporous film decreased rapidly and reached

to a value around zero within a day indicating the complete quenching of the

excimer emission. The Iexc/Imon ratio of porous film decreased sharply from 4.09
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Figure 4.10: Fluorescence spectra of porous film with respect to time.

to 3.78 in the first 2 hours which may be due to the rapid solvent evaporation

from the as-prepared films. After two hours, the decrease in the emission slowed

down and reached a constant rate. Even after one week, a high Iexc/Imon ratio of

2.21 was observed for the porous film.

It can be revealed that randomly distributed ormosil particles in the walls of

the ormosil network largely prevents the aggregation of pyrenes and self-quenching

of pyrenes and thus greatly improves excimer stability. It is important to note

that time-dependent excimer stability of pyrene has not been investigated in most

of the previous studies [13, 16, 17, 66, 67, 68]. Our results show the importance

of investigation of excimer stability in order to produce thin films providing long-

lived pyrene excimer emission.
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Figure 4.11: Fluorescence spectra of nonporous film with respect to time.
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Figure 4.12: Change in the Iexc/Imon ratios calculated by the values in the spec-
tra given in Figure 4.10 and Figure 4.11 for porous and nonporous films, respec-
tively. Porous film has significantly slower self-quenching and considerably higher
Iexc/Imon value compared to nonporous film.
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Table 4.1: Physical properties of pyrene doped porous ormosil thin films used in
nitroaromatic explosive sensing studies.

Film Thickness (nm) Refractive Index (nD) Porosity (%) Iexc/Imon

at 600 nm
F1 108 1.112 73.3 1.21
F2 251 1.166 60.5 4.09
F3 1202 1.206 51 7.28

4.3 Nitroaromatic Explosive Sensing

Having very strong excimer emission and high porosity, our ormosil thin films

are very promising for rapid detection of nitroaromatic explosives from their va-

pors. We evaluated TNT sensing performances of three 4.14 mM pyrene doped

porous ormosil films with different thicknesses, which are given in Table 4.1. The

thicknesses of the films were simply tuned by changing the concentration of the

thin film deposition solution. For example, for thinner film preparation amount

of methanol added to the gel was increased. Reduction in the porosity of the

films with increasing thickness was observed due to the closer packing of the or-

mosil colloidal particles in more concentrated ormosil sol. Also, lower Iexc/Imon

ratio was observed for thinner films (Table 4.1) because of the decreasing pyrene

concentration after diluting the ormosil sols.

Fluorescence quenching performances of the films were determined by keeping

the films in a closed vial saturated with TNT vapor and measuring their fluores-

cence intensities after certain time intervals. Fluorescence quenching of F1 film

against TNT is shown in Figure 4.13. We observed a rapid fluorescence quench-

ing for the F1 against TNT; 32% quenching was observed after 10 seconds and

it reached to 87.4% after five minutes. The intense blue emission of the pyrene

excimers also enabled the naked-eye detection of the nitroaromatic explosives.

Figure 4.14 shows emission of F1 films under UV-light illumination after they

were exposed to TNT for different durations. The rapid fluorescence quenching

of the films against TNT vapor can be observed from the photographs. Even after

exposure to TNT for 30 seconds, there is a considerable decrease in the bright

blue emission of F1 and after 5 minutes, almost all emission is quenched.
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Figure 4.13: Time-dependent fluorescence quenching of the F1 film via exposure
to TNT for increasing time.

Figure 4.14: Visual detection of TNT vapor. Photographs of F1 films under UV
light illumination which were exposed to TNT vapor for different durations as
depicted above the films.
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Fluorescence of F2 film which is shown in Figure 4.15 was considerably

quenched by TNT indicating the film is also suitable for sensing TNT with its

bright excimer emission and high quenching signal. Fluorescence of F3 film which

is shown in Figure 4.16 was also quenched by TNT, however at a slower rate

compared to F1 and F2 films. It is clearly observed that F3 film has very strong

excimer emission although it is exposed to TNT for ten minutes indicating that

quenching may not be visualized for this film.

Quenching efficiencies of the F1, F2 and F3 films are shown in Figure 4.17

and can be more clearly compared. For the F2 film; 18.2% quenching and 68.2%

quenching were observed after 10 seconds and five minutes, respectively. On the

other hand for the thicker film, F3; the quenching efficiencies were much lower;

as 8.0% and 42.1% after 10 seconds and five minutes, respectively. Fluorescence

quenching efficiency is depended on the film thickness and as previously shown,

F1; the thinnest film showed the highest quenching efficiency. Higher quenching

efficiency for the F1 and F2 films compared to thicker F3 film can be attributed

to the higher porosity of these films (Table 4.1) and easier diffusion of TNT

molecules through these films.

Fluorescence quenching based TNT sensing with pyrene excimers is illustrated

in Figure 4.18. Pyrene doped ormosil film emits light at around 470 nm when it

is excited at 340 nm in the absence of TNT. In the presence of TNT, emission of

the film is quenched due to the photo-induced electron transfer between TNT and

excited pyrene. When TNT interacts with excited pyrene the excited electron is

transferred to the LUMO of the TNT molecule instead of relaxing back to the

ground state of pyrene. (Figure 4.18) [60].

Sensing measurement with an F2 film was also performed for another ni-

troaromatic explosive DNT by using the same procedure as we did with TNT.

Fluorescence of F2 film which is shown in Figure 4.19 was quenched rapidly

against DNT. Quenching efficiencies observed with DNT for 10 s and five min-

utes are 19.9% and 88.2%, respectively. It is shown in Figure 4.20 that F2 film

exhibits higher quenching efficiency against DNT than TNT due to the higher

vapor pressure of DNT compared to TNT.
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Figure 4.15: Time-dependent fluorescence quenching of the F2 film via exposure
to TNT for increasing time.
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Figure 4.16: Time-dependent fluorescence quenching of the F3 film via exposure
to TNT for increasing time.
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Figure 4.17: Fluorescence quenching efficiencies of the F1, F2 and F3 films (108
nm, 251 nm and 1202 nm, respectively) for different exposure times.

Figure 4.18: Schematic of TNT sensing with pyrene excimer via fluorescence
quenching (photographs show the corresponding films under UV light).
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Figure 4.19: Time-dependent fluorescence quenching of the F2 film via exposure
to DNT for increasing time.

In order to compare self-quenching of pyrene excimer emission with its quench-

ing in the presence of TNT, we calculated 50% quenching times of initial emissions

for F2 film. 50% of the initial excimer emission self-quenches within approxi-

mately 6 days (Figure 4.10). On the other hand, in the presence of TNT, 50%

quenching takes only ∼ 150 seconds (Figure 4.15) indicating that quenching in

the presence of TNT is approximately 3 x 103 times faster than self-quenching of

the excimer emission. Therefore, pyrene doped mesoporous ormosil mesoporous

thin films can be used for the sensing of TNT vapor by monitoring the rapid

decrease in the excimer emission intensity.

4.4 Selectivity of the Sensor

After demonstrating the sensitivity of the sensor against TNT and DNT vapors,

we tested the sensor with nitrobenzene (NB) which is also a nitroaromatic ex-

plosive and also with several volatile aromatic or nonaromatic compounds using
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Figure 4.20: Fluorescence quenching efficiency of F2 film via exposure to DNT
and TNT with respect to time.

4.14 mM pyrene doped F2 films. Calculated fluorescence quenching efficiencies

are shown in Figure 4.21 for all tested compounds including TNT and DNT.

Nitroaromatic explosives largely quenched the fluorescence of the F2 film. Flu-

orescence quenching efficiencies of the films against DNT, TNT and NB were

39.2%, 31.5% and 16.2% after 30 seconds, respectively. After five minutes, flu-

orescence quenching efficiencies of the films against DNT, TNT and NB were

increased to 88.2%, 68.2% and 66.7%, respectively. As mentioned above, higher

quenching efficiency of DNT can be attributed to its higher vapor pressure (∼100

ppb) than TNT (∼5 ppb) [69]. On the other hand, NB shows lower quenching

efficiency although its vapor pressure (∼150 ppm) is considerably higher com-

pared to TNT and DNT [13]. Beside vapor pressure, the exergonicity of electron

transfer between excited pyrene excimers and nitroaromatic compounds and also

their binding strength to the pyrene molecules affect quenching performance of

nitroaromatics [19, 70]. Binding strength of NB to the electron-rich pyrene rings

is expected to be lower than those of TNT and DNT since NB has only one
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Figure 4.21: Selectivity of the pyrene doped ormosil films for nitroaromatic ex-
plosive vapors.

electron-withdrawing nitro group. Therefore NB results in a lower quenching ef-

ficiency. Lastly, exposure of the sensor to toluene, ammonium nitrate, benzene,

benzoic acid, sodium hydroxide, 3,4 DHBA and methanol did not result in a

significant fluorescence quenching indicating the good selectivity of the sensor to

nitroaromatic explosives.

4.5 Reusability of the Sensor

Reusability is an important sensor parameter, which is desired to develop cost-

effective sensors. With regard to this, we evaluated the reusability of our films.

We examined recovery of excimer emission signal of an F2 film after it was

quenched with TNT vapor. In order to recover the fluorescence, the quenched

film was simply immersed in water for ten minutes and then left to dry at room

temperature for another ten minutes. Fluorescence intensities measured after in-

dividual quenching and recovery cycles are shown in Figure 4.22(a). In the first
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Figure 4.22: Fluorescence quenching and recovery cycles for an F2 film. The inset
is the photograph of water droplet on the F2 film with contact angle (CA) value
indicating that the film is hydrophobic. (b) Fluorescence spectra recorded before
the first quenching and after the fifth recovery step of the tested film.

recovery step, fluorescence of the F2 was not fully recovered. Since the film is

hydrophobic as shown in the inset of Figure 4.22(a), presumably water did not

penetrate through the pores of the film and consequently did not completely wash

the film in the first recovery cycle. Nevertheless, there is a very significant differ-

ence in the intensities between the quenched and recovered states which enables

accurate sensing of TNT. Interestingly, fluorescence of the F2 film can almost be

recovered at least for four additional cycles. As shown in Figure 4.22(b), the film

still has a considerably strong excimer emission intensity after the fifth recovery

cycle indicating that the film is suitable for further use.
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Chapter 5

Conclusion

In this work, we described the preparation of ormosil thin films with bright and

stable pyrene excimer emission via a facile sol-gel process. Pyrene molecules were

encapsulated in the ormosil network without covalently binding and pyrene ex-

cimers were formed in the network. Time-dependent stability of pyrene excimers

were investigated in both porous and nonporous ormosil films. Pyrene excimer

formation and corresponding emission intensity were monitored using the fluores-

cence spectroscopy. A significant pyrene excimer emission is observed with pyrene

concentration above 2.07 mM and excimer emission is enhanced more with further

increasing the pyrene concentration. Interestingly, excimer emission is stronger

and more stable in porous films, whereas it is weak and disappears rapidly in

nonporous counterparts. Mesoporous structure of ormosil films is believed to be

responsible for the improved excimer formation and stability by acting as an ideal

environment for nanoscale confinement of pyrene molecules.

In the second part of the thesis, we studied nitroaromatic explosive sensing

performance of the porous films. Mesoporous films exhibited rapid fluorescence

quenching response against nitroaromatic explosive vapors. Fluorescence quench-

ing efficiency increased with decreasing film thickness due to the higher diffusion

rate of analyte vapors through the thinner films. More importantly, fluorescence

response of the films can be observed visually under UV light illumination. Films

did not demonstrate significant fluorescent quenching response in the presence of
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other various analytes, indicating the good selectivity of the sensor to nitroaro-

matic explosives. Furthermore, fluorescence signal of the films can be regenerated

by simply washing the films with water. We demonstrated that the films can be

used for at least five quenching-recovery cycles. We believe that pyrene doped

mesoporous ormosil thin films present a promising sensor platform with their high

surface area, easy synthesis, cost-effectiveness and reusability.
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